Installation
Install Argo CLI:
Copy brew install argoproj/tap/argo
Install Argo Workflows in Kubernetes:
Copy kubectl create namespace argo
kubectl apply -n argo -f https://raw.githubusercontent.com/argoproj/argo-workflows/stable/manifests/install.yaml
Access the Argo UI
Port-forward the Argo UI:
Copy kubectl -n argo port-forward deployment/argo-server 2746:2746
Access UI: Open a browser and go to http://localhost:2746
.
Submit a Workflow
Create a simple workflow YAML (hello-world.yaml):
Copy apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: hello-world-
spec:
entrypoint: whalesay
templates:
- name: whalesay
container:
image: docker/whalesay
command: [cowsay]
args: ["hello world"]
Submit the workflow:
Copy argo submit hello-world.yaml
Monitor Workflows
List workflows:
Get workflow details:
Copy argo get <workflow-name>
Watch workflow logs:
Copy argo logs -w <workflow-name>
Watch the progress of a workflow:
Copy argo watch <workflow-name>
Workflow Lifecycle Management
Suspend a running workflow:
Copy argo suspend <workflow-name>
Resume a suspended workflow:
Copy argo resume <workflow-name>
Terminate a running workflow:
Copy argo terminate <workflow-name>
Retry a failed workflow:
Copy argo retry <workflow-name>
Create Workflow Templates
Define a template (workflow-template.yaml):
Copy apiVersion: argoproj.io/v1alpha1
kind: WorkflowTemplate
metadata:
name: hello-world-template
spec:
entrypoint: whalesay
templates:
- name: whalesay
container:
image: docker/whalesay
command: [cowsay]
args: ["hello world from template"]
Create the template:
Copy kubectl apply -f workflow-template.yaml
Submit a workflow using the template:
Copy argo submit --from workflowtemplate/hello-world-template
Using Parameters in Workflows
Define a parameterized workflow (params-workflow.yaml):
Copy apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: hello-world-param-
spec:
entrypoint: whalesay
arguments:
parameters:
- name: message
value: "hello world"
templates:
- name: whalesay
inputs:
parameters:
- name: message
container:
image: docker/whalesay
command: [cowsay]
args: ["{{inputs.parameters.message}}"]
Submit with parameters:
Copy argo submit params-workflow.yaml -p message="hello Argo"
Artifacts and Outputs
Define a workflow with artifacts (artifacts-workflow.yaml):
Copy apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: artifacts-
spec:
entrypoint: whalesay
templates:
- name: whalesay
container:
image: docker/whalesay
command: [cowsay]
args: ["hello world"]
outputs:
artifacts:
- name: message
path: /tmp/message
DAG and Steps
Define a DAG workflow (dag-workflow.yaml):
Copy apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
generateName: dag-diamond-
spec:
entrypoint: diamond
templates:
- name: diamond
dag:
tasks:
- name: A
template: echo
arguments:
parameters: [{name: message, value: "A"}]
- name: B
dependencies: [A]
template: echo
arguments:
parameters: [{name: message, value: "B"}]
- name: C
dependencies: [A]
template: echo
arguments:
parameters: [{name: message, value: "C"}]
- name: D
dependencies: [B, C]
template: echo
arguments:
parameters: [{name: message, value: "D"}]
- name: echo
inputs:
parameters:
- name: message
container:
image: alpine:3.7
command: [sh, -c]
args: ["echo {{inputs.parameters.message}}"]
Submit the DAG workflow:
Copy argo submit dag-workflow.yaml
Clean Up
Delete a workflow:
Copy argo delete <workflow-name>
Delete all workflows:
Useful Commands
Get the status of a workflow:
Copy argo get <workflow-name>
Resume a suspended workflow:
Copy argo resume <workflow-name>
This cheat sheet should help you start with Argo Workflows in a Kubernetes environment. For more detailed information, refer to the Argo Workflows documentation.
Last updated 9 months ago